

The Location of Earth Strain Instrumentation

R. G. Bilham

Phil. Trans. R. Soc. Lond. A 1973 274, 429-433

doi: 10.1098/rsta.1973.0072

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click **here**

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

Phil. Trans. R. Soc. Lond. A. 274, 429–433 (1973) [429]
Printed in Great Britain

The location of Earth strain instrumentation

By R. G. BILHAM

Department of Geodesy and Geophysics, Madingley Road, Cambridge

A list of strainmeter locations is presented. The geographical coordinates and instrumental parameters of more than 250 instruments are summarized together with information concerning altitude, depth below ground level and rock type.

The following pages are a partial summary of the response to a questionnaire circulated in 1969 by the Royal Society concerning the study of small-scale movements of the Earth's crust. The questionnaires were sent to the national committees of all countries corresponding to the International Association for Geodesy and several hundred replies were received. The purpose of the questionnaire was to ascertain the extent and sophistication of precise measurements of crustal movements. The replies ranged from geodetic triangulation and trilateration work to the development and application of instruments for the measurement of tilt, strain and gravity. Much of the work described has advanced since then and new techniques have evolved, especially in the field of long-distance geodetic work. It would not be possible to do justice to the present wide range of precise geodetic work and so it has been omitted from this summary. However, it is possibly of interest to many to learn of the large number of locations in which tilt and in particular strain are being measured. The reader interested in the distribution of observatories where tilt and gravity measurements are taking place is referred to Melchior (1969). A summary of the location of Earth strainmeters is presented. However, it should be remembered that the commendable move towards locating these instruments in non-observatory environments to study 'real geophysical problems' must inevitably mean that the list is largely incomplete.

Key to strainmeter location list

Latitude is in most cases north except where stated. Likewise longitude is measured eastward. The third column shows the altitude of the strainmeter above mean sea-level and the fourth column the depth below the surface of the ground. A date in the fifth column indicates the year in which the observations started or, in some cases which are in italics, the year in which operation ceased. The sixth column indicates the rock type in which the strainmeter is installed. The final column summarizes the strainmeter characteristics.

Key to strainmeter description

Four parameters are coded to describe the type of strainmeter. The type of length standard used is always the second code letter in the type designation. (Five types of length standard are mentioned.) It is preceded by a figure which specifies the number of instruments and is followed by a figure in parentheses which indicates the length of the strainmeter. If several figures are shown in parentheses these are the different lengths of separate strainmeters where known. The third parameter describing the strainmeter is the type of transducer; six types of transducers are mentioned. The last parameter is the method of recording. In addition, the azimuth is given where it is known for single strainmeters.

Strainmeter sensitivity is adequate in nearly every strainmeter listed to measure strains smaller than 10^{-9} strain. Exceptions are stated where these are more or less sensitive.

430

R. G. BILHAM

Strainmeter description (last column)

sequence A B (C) D E example 2 Q (20) C i

interpretation: two 20 m quartz rod strainmeters with capacitive transducers and paper chart recorders.

A number of strainmeters

(altogether, more than 250 instruments are mentioned)

B type of length standard

Q, fused quartz

I, invar rod

S, suspended wire (variable sag, Sassa type)

W, constant tension wire

L, laser

C length of strainmeter(s) in metres

D type of transducer

type of record

laser strainmeters

Mc, Michelson interferometer with fringe counter

Mf, Michelson interferometer with fringe follower

Ff, Fabry Perot with fringe follower

Fb, Fabry Perot with beat frequency counter.

solid length standard strainmeters

C, capacitative displacement transducer

E, electromagnetic displacement transducer

P, photocell transducer R, roller type amplification

O, Ozawa type zollner amplification

B, bifilar transducer

p, photographic, direct optical level or galvanometer

i, pen chart recorder, ink, scratch or heated stylus

t, punched or magnetic tape

start or

						start or		
		latitude	longitude	altitude	depth	end date	rock type	strainmeter description
	Japan							
1	Abaratsubo	35 09	139 37	3	12	1960	sandstone	3Q(8, 10, 25)-i
2	Akibasan	$34\ 11$	$135 \ 10$	10	15	1960		1I(-)Bp
3	Aobayama	$38\ 15$	$140 \ 51$	-		1967	sandstone	1Q(–)Ei
4	Bessi	$33\ 52$	133 19	650	750	1949		1I(24)Bp
5	Donzuroba	$34\ 32$	$133 \ 19$	150	30	1961		7I (–)Rp
								2S(-)Bp
								3Q(–)OpRiCt
6	Fujigawa	$35 \ 14$	$138\ 25$			1970	conglomerate	$3\mathrm{Q}(40)\mathrm{Eip}$
7	Hosokura	$38 \ 48$	$140 \ 54$	130	160	$^{2}44/57$	-	1S(20)Bp N55W
8	Himekami	$39\ 51$	$141 \ 15$	mounted	-	1970	granite	1Q(-)Ep
9	Hokushin	$36\ 42$	$138 \ 12$			1968	tuff	3Q(40)Rp, i
10	Ide	$34 \ 48$	$135 \ 49$	150	30	1952	mica schist	8I(–)Rp
								3I(–)Op
								1I(–)Ep
		$34\ 54$	$135\ 50$	-	_	1967	Palaeozoic	7I(-)Rp
								1S(-)Bp
11	Iwakura	35~05	$135 \ 48$	280	50	1961	Palaeozoic	3I(–)Rp
12	Izu nagoaka	$35\ 20$	$138 \ 56$	50	25	1968	Tertiary	2I(5, 4)Bp
13	Kamigano	35~04	$135 \ 46$	190	9	1957	Palaeozoic	1I(5)Bp, $N25E$
14	Kamitakari	36 17	$137 \ 19$	800	40	1966	granodiorite	3Q(28)–, p, i
15	Kishu	$33\ 52$	$135\ 53$	50	100	1963	Tertiary sandstone	\
								3S(9, 8, 5)Bp
16	Kochi	$33 \ 34$	$133\ 32$	10	40	49/53		1S(24)Bp, N14W
17	Mekamine	$32\ 37$	$131\ 27$	130	165	49/52		1I(20)Bp, N57W
18	Makitani	$35\ 56$	$136\ 13$	0	10	1969	rhyolite-andesite	4-(10, 9, 8, 6)Ei
								3I(8)Bp
19	Matsushiro	36.33	138 13	440	60	1953	diorite-porphyry	$2\mathrm{S}(25)\mathrm{Bp}$
								1Q(100)Rp, Ci
20	Matsutama	$33\ 50$	$132 \ 43$	5	10	1947	shale	$3\mathrm{Q}(25)\mathrm{Rp}$
21	Maize	37 40	138 48	5	10	1952	tuff	2Q(11)-p
22	Miyako	$39\ 35$	141 59	-	-	1969	granodiorite	1Q(–)Ep, i

THE LOCATION OF EARTH STRAIN INSTRUMENTATION 431

							start or					
			latitude	longitude	altitude	depth	end date	rock type	strainmeter description			
	23	Nibetsu	39 48	140 16	-		1967	granite	1Q(-)Ep, i, t			
AL,	24	Mitsubishi	35 40	$135\ 47$	500	200	1943	***************************************	1S(25)Bp, E3S			
ATICAL, EERING	25	Nagashima	34 13	136 13	800	80	1961	Palaeozoic	1S(30)Bp, N/S			
MA REI	26	Nokogiriyama	35 10	$139\ 50$	23	10	1960	tuff	3Q(25) $-i$			
田ではある									1–(1.5)Ei			
PER	27	Oga	$39\ 54$	$139\ 47$			1967	quartz-andesite	-Q(-)Ei, t			
≥ L ∞ V	28	Ogoya	36 17	$136\ 33$	210	30 0	1948	Tertiary tuff	1S(20)Bp, N48W			
	29	Osakayama	$34\ 59\frac{1}{2}$	$135\ 51\frac{1}{2}$	100	150	1949		6I(-)Op			
									7S()Bp			
1	30	Oura	$34\ 11$	135 10	50	10	1960		2S(5)Bp			
	31	Sakuma	35~06	$137 \ 48$	132	20	1956	granite	3Q(18, 9, 10)Rp			
Δ	32	Sanriku	$39\ 06$	$141 \ 46$		_	1969	shale	−Q(−)Ep, t			
7	33	Shima	$34\ 22$	$136 \ 48$	25	10	1961	Pliocene	1I(5)Bp, N65E			
OH	34	Shionimisaki	$33\ 27$	$135 \ 46$	10	5	1957					
\mathbb{Z}	35	Suhara	$33\ 52$	$135\ 53$			1963	Palaeozoic	3Q(-)Op			
\mathbf{m}	36	Susaka	36 38	138 19	450	30	1966	porphyrite	3I(5, 5, 2.5)Bp			
HE	37	Tottori	35 31	$134 \ 16$	150	100	1958	-	1I(5)Bp, N35W			
TES	38	Yahiko	37 44	138 40	30	50	1957	tuff	3Q(30)-p, i, t			
		Yokoyama					1888	-	iron (1) lever			
AS	40	Yura	$33\ 57$	$135\ 07$	10	30	1957	Mesozoic	4I(5, 5, 6, 2)Bp			
26												
PHILOSOPHICAL TRANSACTIONS		Asia										
	41	Garm, Tadzhikstan	39 04	70 23			1968		Q			
SAS	42	Serpoukhov, Moscow	$37\ 36$	$\begin{array}{c} 70\ 23 \\ 54\ 42 \end{array}$	145	15	1965	_	<u></u>			
9ž	43	Kondara (Dzherino),	38 48	68 49	1100	$\frac{15}{45}$	1964		3Q(18)RpPi			
₹≴I	10	Tadzhikstan	90 ±0	00 40	1100	10	1001		5Q(16)1tp11			
P	44	Talgar, Kazakstan	43 16	77 23	1800	50	1961		$2\mathrm{Q}(20)\mathrm{Rp}$			
	45	Tbilissi, Georgia	41 50	$44\ 57$	500	60	1962		$2\mathbb{Q}(41, 14)$			
	46	Yalta, Crimea	44 40	34 12	10	4	1956	slates	1Q(2)Rp			
	47	Dasht-e-Bayaz, Iran	34 10	58 30	1500	$\tilde{9}$	1971	conglomerates	3W(10)Ei, N54W			
						-			(,,			
			lat.	long.								
		U.S.A.	north	west								
AL,	40	A 1'-1 CTP	71.00	450.40	0~	0	1000		20/ \0': 40 5 6			
ATICAL, EERING	48	Amchitka S.E.	51 22	179 13	95	0	1969	\$	$3Q(-)Ci$, $10^{-5, -6}$			
SEP A	49 50	Amchitka N.W. Adak	51 38	178 40	650	0			3Q(-)Ci, 10 ^{-6, -7} 3Q(-)Ci, 10 ⁻⁷			
田に回る	51	Bergen Park	$51\ 53 \ 39\ 42$	$176\ 41$ $105\ 12$	3 60	0		#PRODUCES#				
MAT PHY: & EN		Boulder, Col.	40 00	$105\ 12$ $105\ 23$		 55	1067	amo nito	3Q(-)Ci 1L(30)Fb, 10 ^{-8, -13}			
≥ □ ∞ ∨	53	Blacksburg	37 14	$\begin{array}{c} 105\ 25 \\ 80\ 25 \end{array}$	$\begin{array}{c} 1882 \\ 635 \end{array}$		$1967 \\ 1967$	granite	$1L(30)$ Fb, $10^{-8, -13}$			
	54	Cascades, Wash.	47 47	$120\ 50$	055	500	1968	aranita	1L(1020)Ff, 10 ^{-8, -11}			
	55	Dalton Canyon	34 18	$120\ 30$ $117\ 49$			1957	granite	1Q(24)B, Ci			
1	56	Denver, Col.	$\begin{array}{c} 34\ 18 \\ 39\ 52 \end{array}$	104 49		0	1967	tronsitional.	1Q(24)B, CI			
—	57	Elliot, Cal.	$\begin{array}{c} 39\ 52 \\ 32\ 53 \end{array}$	117 06	***********	0	1969	stiff clay	1L(800)Mc, 10 ^{-8, -11}			
\mathbf{A}	58	Flat River, Mo.	$\begin{array}{c} 32\ 53 \\ 37\ 50 \end{array}$	90 29	180	110	1969	dolomite	3Q(30)Ci			
	59	Franklin	41 05	76 36			1956	dolomite	1Q			
	60	Garland	32 52	96 40	183	14	1968	limestone	1I(18) vertical			
\sim	61	Green Abs, Col.	32 32					minestone	Q-			
E		Hollister	36 38	121 14		0	1968	surface	1Q, 10 ⁻² , several creep			
\pm	63	Houlton, Maine	46 10	$67\ 59$	213	14	1969	slates	1I(18) vertical			
TH	64	Isabella, Cal.	35 40	118 29	835	50	1957	granite	1Q(30)Ci, N23W			
	65	Kernville, Cal.	$35\ 40$	118 29	860	100	1966	granite	2L(25, 10)Ff			
AS	66	Kipapa, Hawaii	$\begin{array}{c} \textbf{21 25} \\ \textbf{21} \end{array}$	158 01		25	1964	basalt	1Q(24)Cp			
PHILOSOPHICAL TRANSACTIONS							2001		- × () ~ P			
ΞΞ	Nevada nuclear test range (stations 67–80)											
70	67	Yucca Mtn	$36\ 56$	116 33	1341	3	1970	welded tuff	1I(6)Ci			
SAS	68	Sleeping Mtn	37 09	116 46	1400	2	1969	-	3Q(6)Ci			
QZ	69	Scottys Junction	37 05	117 16	1400	2	1969	, <u> </u>	$1\widetilde{\mathrm{Q}}(9)\mathrm{Ci}, \mathrm{N84E}$			
≡≾	70	Triaxial	37 08	$116\ 02$	1280	2	1969	alluvium	$3\widetilde{\mathrm{I}(6)}\mathrm{Ei}$			
P	71	914M	37 08	$116\ 05$	1328	2	1969	alluvium	2I(6)Ei			
									• •			

79 80

.00

R. G. BILHAM

					start or		
	latitude	longitude	altitude	depth		rock type	strainmeter description
1524M	37 08	116 06	1334	2	1969	alluvium	$2\mathrm{I}(6)\mathrm{Ei}$
Thirsty Canyon	$37 \ 12$	$116\ 34$	1700	2	1969		4Q(6)Ci
Oak Spring Butte	$37 \ 14$	$116\ 03$	1731	40	1970	limestone	1Q(6)Ci, N81E
·	$37 \ 14$	$116\ 09$	1800	500	1968	-	3Q(6)Ci
Tolicha Peak	37 17	$116\ 52$	1524	3	1970	tuff, rhyolite	1Q(6)Ci
Quartzite Mtn	37 33	116 19	1874	4	1970	volcanics	1Q(6)Ci, N20E
Kawich Peak	$37\ 54$	$116\ 28$	2134	8	1970	volcanics	1Q(6)Ci, N4W
Rawhide Mine	$38 \ 14$	$116\ 23$	1768	5	1970	metasediment	1Q(6)Ci, N35W
Twin Springs	38 12	116 09	2200	2	1969	· 	3Q(13)Ci
Ely	39 16	$114\ 57$	2200	2	1969		1Q(32)Ci
Ogdensberg, New Jersey	$41\ 05$	$75\ 36$	-370	543	1960	coarse marble	4Q(60)Ci
D. L.					1007	.•,	1L(1)Mc, shear strain
Pasadena	96.90	101.11			1935	granite	iron(20)Ep
Stone Canyon, Nev.	36 38	121 14	300	2	1967	Miocene sediment	3Q(30)Ci
Salt Lake, Utah	40 34	111 46	2000	300	1968	granite	3Q(33, 33, 10)
Queen Creek, Arizona	33 11	$111\ 38 \\ 98\ 35$	610	110	1970	quartz diorite	3I(40, 40, 12vert)
Wichita Mtn, Oklahoma	34 43	98 39	455	4	63/69	granite	6Q(18)Ci
	lat.	long.					
South America	south	west					
Arequipa, Peru	$16 \ 44$	71 34	2300	20	1965		
Ayanguera, Peru	17 01	71 40	250	22	1965	-	
Chosica, Lima, Peru					1957		$1\mathrm{Q}(25)\mathrm{Ci}$
Condor, Peru	$13\ 54$	$-75\ 32$	1550		1965	<u>-</u>	
Guadalupe, Peru	14 00	$75 \ 48$	550	20	1965	_	_
Nana, Peru	$11\ 59$	76 51	580		1957		2Q(30)Ci
Ongoro, Peru	$15 \ 89$	$72\ 28$	900	25	1965		
San Christobal, Santiago, Chile					1957	-	1Q(25)Ci
San Gregorio, Peru	$16\ 56$	$72\ 42$	140	20	1965		
Saramarca, Peru	14 50	75 06	840	60	1965		
Zamaca, Peru	14 67	75 36	300	20	1965		
·							
	lat.	long.					
Australasia	south	east					
Cooney Tunnel, Armidale, N.S.W.	30 35	151 53	-	200	1971	·	2W(10)Ei IQ(10)Ei
Brisbane, Australia	28 30	153 00		47	1966		1L(3)Mc, shear
Wellington, New Zealand	41 18	174 44	380	10	1970	greywacke	3W(10)Ei
Tromiscon, Trom Boundary			300	10	1010	groy mone	011(10)21
E	lat.	long.					
Europe	north	east					
Bonn, Germany	50 35	07 14		80	1972	basalt	1W(10)Ei
Burdale, G.B.	54 03	00 40W	130	80	1971	chalk	1W(10)Ei, N34W
Braunschweig, Germany	65 40	17 00	_			-	
G 111 GD	64 10	21 10					
Cambridge, G.B.	52 12	00 07	30	0	1971	clay	2W(10)Ei N2E
Clayton, G.B.	53 46	01 50W		80		shales	1W(10)Ei N67E
Freiberg, D.D.R.	50 55	13 20	385	1	1961	.1 *	1Q(25)Ei, N36W
Genoa, Italy	44 25	08 55	58	18	1967	schist	2Q(12)Ei, N36W
Moxa, D.D.R.	50 39	11 37	455		1969		2Q(-)Ei
Paris, France	48 50	02 20	50	190	1961		1Q(10)OpCi
Queensbury, G.B.	53 46	01 51W	200	120	1969	sandstone and	1L(54)Mc N45E
						shales	6W(10)Ei N45E
							1Q(20)Ei N45E

THE LOCATION OF EARTH STRAIN INSTRUMENTATION 433

	latitude	longitude	altitude	depth	start or end date	rock type	strainmeter description
Schiltach, Germany	48 18	08 17		120	1972	granite	4W(10)Ei
Trieste, Italy	45 41	13 47	180	15	1970	limestone	1L(60)Mc
Walferdange, Luxembourg	49 40	06 09	372	100	1971	gypsum	1W(10)Ei 1Q(3)Ci, vertical 1Q(25)CiOp 1I(15)Op
Woodhead, G. B.	53 30	01 48W	300	200	1972	sandstone	3W(10)Ei 1W(10)Ei N59E

REFERENCE (Bilham)

Melchior, P. 1969 Bulletin d'Information Marées Terrestres, No. 56, 31 December 1969. Observatoire Royale de Belgique, Bruxelles 18.